Seven N-terminal Residues of a Thermophilic Xylanase Are Sufficient to Confer Hyperthermostability on Its Mesophilic Counterpart

نویسندگان

  • Shan Zhang
  • Yongzhi He
  • Haiying Yu
  • Zhiyang Dong
چکیده

Xylanases, and especially thermostable xylanases, are increasingly of interest for the deconstruction of lignocellulosic biomass. In this paper, the termini of a pair of xylanases, mesophilic SoxB and thermophilic TfxA, were studied. Two regions in the N-terminus of TfxA were discovered to be potentially important for the thermostability. By focusing on Region 4, it was demonstrated that only two mutations, N32G and S33P cooperated to improve the thermostability of mesophilic SoxB. By introducing two potential regions into SoxB in combination, the most thermostable mutant, M2-N32G-S33P, was obtained. The M2-N32G-S33P had a melting temperature (Tm) that was 25.6°C higher than the Tm of SoxB. Moreover, M2-N32G-S33P was even three-fold more stable than TfxA and had a Tm value that was 9°C higher than the Tm of TfxA. Thus, for the first time, the mesophilic SoxB "pupil" outperformed its thermophilic TfxA "master" and acquired hyperthermostability simply by introducing seven thermostabilizing residues from the extreme N-terminus of TfxA. This work suggested that mutations in the extreme N-terminus were sufficient for the mesophilic xylanase SoxB to acquire hyperthermostability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancement of the thermostability and hydrolytic activity of xylanase by random gene shuffling.

The thermostability of Streptomyces lividans xylanase B (SlxB-cat) was significantly increased by the replacement of its N-terminal region with the corresponding region from Thermomonospora fusca xylanase A (TfxA-cat) without observing a decrease in enzyme activity. In spite of the significant similarity between the amino acid sequences of the two xylanases, their thermostabilities are quite di...

متن کامل

Discovery of Microorganisms and Enzymes Involved in High-Solids Decomposition of Rice Straw Using Metagenomic Analyses

High-solids incubations were performed to enrich for microbial communities and enzymes that decompose rice straw under mesophilic (35°C) and thermophilic (55°C) conditions. Thermophilic enrichments yielded a community that was 7.5 times more metabolically active on rice straw than mesophilic enrichments. Extracted xylanase and endoglucanse activities were also 2.6 and 13.4 times greater, respec...

متن کامل

Using neural networks expert system to predict protein thermostability

Some biological or chemical reactions need to be performed at high temperatures to decrease reaction time. However, many proteins are not very stable when heated. Research is needed that helps proteins to remain active and stable at high temperatures overcoming many limitations to their industrial applications. Recently we have shown that some structural features of proteins are related to the ...

متن کامل

Domain-swapping of mesophilic xylanase with hyper-thermophilic glucanase

BACKGROUND Domain fusion is limited at enzyme one terminus. The issue was explored by swapping a mesophilic Aspergillus niger GH11 xylanase (Xyn) with a hyper-thermophilic Thermotoga maritima glucanase (Glu) to construct two chimeras, Xyn-Glu and Glu-Xyn, with an intention to create thermostable xylanase containing glucanase activity. RESULTS When expressed in E. coli BL21(DE3), the two chime...

متن کامل

Protein Thermostability Is Owing to Their Preferences to Non-Polar Smaller Volume Amino Acids, Variations in Residual Physico-Chemical Properties and More Salt-Bridges

INTRODUCTION Protein thermostability is an important field for its evolutionary perspective of mesophilic versus thermophilic relationship and for its industrial/ therapeutic applications. METHODS Presently, a total 400 (200 thermophilic and 200 mesophilic homologue) proteins were studied utilizing several software/databases to evaluate their amino acid preferences. Randomly selected 50 homol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014